TRAIN SMARTER, PERFORM BETTER:
CONNECTING PERCEPTION-TO-ACTION FOR PERFORMANCE
Katie Mitchell, PhD(c), PT, CAT(C).
Dept of Kinesiology & Phys Ed, Wilfrid Laurier University
Owner, Thrive NeuroSport Rehabilitation & Performance
What is perception-action integration?
Our environment predicts how we move. It provides us with opportunities for movement, or what ecological neuroscientist, J.J. Gibson, referred to as “affordances”. We use vision to obtain rich information about the affordances within our environment, including spatial (e.g., shape and colour) and temporal (e.g., location and speed) elements.
For example, if a teammate passes a soccer ball to you, you know exactly how fast its moving and where you need to be positioned to receive the ball. You must connect vision-to-action. Based on this visual information, it is ultimately our decision how we choose to move to be successful within any given scenario. If we consider every time we decide to pick up a glass of water to take a drink, or when to cut left or right around an opponent in a rugby game, we make thousands of these decisions in a day, big or small.
Challenging the athlete brain
Sport competition presents a much larger, random array of both cognitive and physical challenges. Athletes are faced with an unpredictable, fast-paced environment, in which they are required to interpret information, make rapid decisions, and perform complex movements to successfully achieve their goal. This is no small feat!
In fact, research has demonstrated that elite-level athletes have superior neural processing and perceptual skills compared to novice performers [1]. Traditionally, coaches have used the cue “keep your eye on the ball” for baseball players, however, we now understand that it’s not the ability of their eyes to track the ball, as much as it is retrieving key visual information and interpreting it to determine when to swing the bat [2, 3].
How do improve performance? Train smarter, not harder.
Athletes spend hours in the gym training physically for competition. However, we often do not challenge the brain in the same way by integrating cognitive and perceptual components, such as visuomotor reaction time, decision-making, balance control, movement inhibition, and more. Training the brain to respond to the environment has the same effects as training to build muscle.
Neuro-plasticity occurs when we light up the circuitry and establish new connections, the same way we build muscle fibres! Often athletes are depicted in social media doing simple response time drills responding to an arbitrary light stimulus. Sure, this engages the visuomotor system, but it is only a small piece of the pie when it comes to perception-action integration. Remember, the key is engaging cognition to choose the successful action!
Evidence-informed training guided by research.
When I first started my PhD, I started using the FITLIGHT® to explore differences in performance on such visuomotor tasks in athletes with and without a concussion injury. A concussion is a functional injury to the brain that may affect several key areas of the brain required for perception-action integration, including vestibular-ocular motor function, cognition, balance, and more.
Our previous study investigated differences in dynamic balance between youth hockey players with and without a history of previous sport-related concussions using a more challenging visuomotor task. We added another layer of difficulty using the FITLIGHT® with a go/no-go task. During the task, athletes stood on a single leg and were instructed to reach their non-stance foot quickly to extinguish green (go) lights and withhold movement for red (no-go) lights. Essentially, we created a ruled-based task that connects vision-to-action and forces a quick decision to either initiate or inhibit a response. Single-leg balance was assessed using a force platform to collect the ground reaction forces under the foot [4].
The findings revealed differences in performance between the two groups of athletes. Youth hockey players who reported previous concussions exhibited a more conservative strategy to maintain balance and required more visual feedback during the go/no-go task. Whereas the athletes without history of concussion performed the task with a more anticipatory strategy, requiring less visual feedback [4]. An anticipatory strategy is more optimal for sport, similar to seeing a play unfold before it actually happens!
Interestingly enough, these findings were consistent over a 70-day period. Therefore, a more challenging visuomotor balance task using technology such as the FITLIGHT®, may be robust enough to resist training effects of a typical hockey season [4].
Moving forward, the future of sport performance…
The growing body of literature indicates that training smarter and incorporating cognitive challenges with traditional sport training may have better transfer to performance. The difference between elite and novice may go beyond skill development, and instead be optimized with training “game sense”. This is why I have started my own clinical practice and training other clinicians to connect the brain and body. The same principles can be applied to recovery from injury.
As clinicians and coaches, are we challenging athletes enough to determine their true readiness for return-to-sport?
In the realms of rehabilitation and performance, it’s essential that coaches and clinicians recognize the importance of cognitive and perceptual training. Specifically, how to implement more valuable training for athletes with robust and intentional methods. Starting by understanding the key fundamentals of perception action integration and lighting up that circuitry!
References:
1. Hülsdünker, T., H.K. Strüder, and A. Mierau, The athletes’ visuomotor system–Cortical processes contributing to faster visuomotor reactions. European journal of sport science, 2018. 18(7): p. 955-964.
2. HÜlsdÜnker, T., H.K. StrÜder, and A. Mierau, Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players. Medicine and science in sports and exercise, 2017. 49(6): p. 1097-1110.
3. Uchida, Y., et al., Origins of Superior Dynamic Visual Acuity in Baseball Players: Superior Eye Movements or Superior Image Processing. PLOS ONE, 2012. 7(2): p. e31530.
4. Mitchell, K.M. and M.E. Cinelli, Balance control in youth hockey players with and without a history of concussions during a lower limb reaching task. Clinical Biomechanics, 2019. 67: p. 142-147.
Katie is a clinician, PhD Candidate at Wilfrid Laurier University, and educator. She is the owner of Thrive NeuroSport Rehabilitation and Performance and Clinical NeuroSport Education (CNS-Ed). Her clinical practice is specialized in concussion, orthopaedics and neurosport performance.
Katie is a focused on the relationship between postural control and visual attention across the athlete spectrum. She completed an undergraduate degree in Kinesiology at WLU, Athletic Therapy certificate at Mount Royal University, and Master of Science in Physical Therapy at Queen’s University. Katie has presented at conferences including the International Society of Posture and Gait Research (ISPGR) Congress and American College of Sports Medicine (ACSM) Annual Meeting. She is also the Lead Team Therapist for Sledge Team Ontario.